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We consider staggered dark solitons admitted by the discrete nonlinear Schrödinger equation with focusing
cubic nonlinearity. In particular, we focus on the study of dark solitons with several holes characterized by the
number of zeros in the uncoupled case. Such structures reveal interesting behaviors, such as stable intersite
dark solitons. All of the structures have no counterpart in the strong coupling limit since they disappear in a
saddle-node bifurcation. We also consider the evolution of structures with multiple holes representing an
interaction between multiple dark solitons in a very discrete case.
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I. INTRODUCTION

Nonlinear localized modes in discrete systems exist due to
the interplay between lattice coupling and nonlinearity ef-
fects. One of the most studied nonlinear lattice models is the
discrete nonlinear Schrödinger equation �1�, which also ad-
mits such spatially localized modes or discrete solitons. Sev-
eral diverse areas where discrete solitons appear in applica-
tions, such as biophysics, nonlinear optics, solid state
physics, waveguide arrays, and Bose-Einstein condensates in
optical lattices, are described in �2�. Many of these systems
can, in some limit, be described by models related to the
discrete nonlinear Schrödinger equation, and in particular,
the latter two have received considerable attention in recent
years.

The first discussion on discrete spatial solitons in a peri-
odic optical structure created by using an array of optical
waveguides was introduced by Christodoulides and Joseph
�3�. Since then, discrete spatial solitons were studied inten-
sively. Extensive reviews of discrete solitons in waveguide
arrays with their applications can be read in �4,5�. Recently,
it has been shown that discrete solitons can be observed and
manipulated experimentally �6–10�. Eisenberg et al. �6� re-
ported the first experimental observation of discrete spatial
solitons in gallium arsenide AlGaAs waveguide arrays.

The use of discrete nonlinear Schrödinger models to de-
scribe Bose-Einstein condensates trapped in periodic optical
lattices was suggested by Trombettoni and Smerzi �11�, and
recent experiments �12� also confirm the existence of self-
localized discrete solitons as predicted by these models.

In addition to localized “bright” solitons, it is well known
that also dark solitons, consisting of a localized dip in a
homogeneous background intensity, may generally exist.
Theoretical reviews of dark solitons and their applications in
nonlinear optics can be read in, e.g., �13,14�. In homoge-
neous continuum systems, bright and dark solitons normally

do not appear simultaneously, since the former generally re-
quire an effectively focusing and the latter an effectively
defocusing nonlinearity. Thus, for example, without any pe-
riodic potential dark solitons are observed in Bose-Einstein
condensates with repulsive interatomic interaction �15�, and
bright solitons when the effective interactions are attractive
�16�.

In the present work, we focus on the study of discrete
dark solitons. It is a fundamental property of discrete sys-
tems �or, more generally, spatially periodic systems with a
band-gap structure for the dispersion relation of linear
waves�, that bright and dark localized modes may appear for
the same physical system. Thus, for example, waveguide ar-
rays with the same material system can be used to form both
bright solitons and dark solitons, since the waveguide dif-
fraction properties can be modified �7,10�. In �7,10�, Moran-
dotti and co-workers reported experimental observations of
discrete dark solitons in a waveguide array. Since in these
cases the nonlinearity itself is focusing, the discrete dark
solitons become “staggered,” i.e., the constant-intensity
background has opposite phases at neighboring sites �poten-
tial wells�. Analogously, when a Bose-Einstein condensate
with repulsive interatomic interactions is subjected to a peri-
odic optical potential, bright discrete �gap� solitons with
staggered tails are observed �12�.

There are many references on the study of discrete dark
solitons �see, e.g., �17–20��. Johansson and Kivshar �19� dis-
cussed the existence and instabilities of two families of fun-
damental dark solitons in the discrete nonlinear Schrödinger
equation, which were shown to exist along a continuous path
ranging from the highly discrete limit of uncoupled lattice
sites, to the continuous limit. In particular, it was found that
oscillatory instabilities were induced by a weak inherent dis-
creteness. Here, we specifically discuss the existence and sta-
bility of more complicated types of strongly discrete dark
solitons with more than one hole or notch in their structures.
Such modes should be of particular interest for experimental
realizations with waveguide arrays, where one may quite
carefully control the generated output by tuning the initial
beams. In particular, it is of interest from a theoretical as well
as a practical viewpoint to know whether such nonfunda-
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mental dark solitons may be stable even when the fundamen-
tal dark modes are unstable. Although, in some sense, our
work has a spirit similar to earlier work on multiple localized
bright modes �see, e.g., �21,22�, and a recent mathematical
work �23� and references therein�, evidently, the physical
context of discrete dark solitons with multiple holes is quite
different.

The present work is organized as follows. We describe the
discrete equation considered in this work and the two basic
modes admitted by it in Sec. II. In that section, we also
recapitulate the calculation of the oscillatory instability of
the modes derived in Ref. �19�, using, however, a different
parametrization that will also be employed for the remaining
parts of this study. In Sec. III, we discuss composite dark
solitons characterized by the property of having several con-
secutive sites with zero intensity at the uncoupled limit. We
show that there are two different types of configurations
identified by the signs of the nonzero field just nearby the
zeros. Even though numerics shows that both configurations
are stable in the weak-coupling regime for large but finite
systems, we conjecture that only one of the two configura-
tions can be stable for infinite systems. In Sec. IV, we present
very discrete structures resembling multiple dark solitons.
We close the paper with a conclusion in Sec. V.

II. THE MATHEMATICAL PROBLEM
AND ITS BASIC MODES

The discrete nonlinear Schrödinger equation we consider
in this work is given by �1,19�

i�̇n + C��n+1 + �n−1� + ��n�2�n = 0, �1�

where, in the context of optical waveguides, �n is the com-
plex envelope of the electric field at the nth site or wave-
guide and C is the coupling constant between the adjacent
sites. The dot generally stands for the derivative in time,
although for spatial solitons in waveguide arrays it physi-
cally represents a derivative with respect to the longitudinal
spatial coordinate. Without loss of generality, we choose C
�0.

Equation �1� has exact stationary solutions of the form

�n = �nei�t. �2�

Let ��=limn→±� ��n�. Because we are considering dark soli-
tons admitted by Eq. �1�, then the boundary conditions ��

are nonvanishing and constant. Generally, for a background
wave vector k, we may assume limn→+� �n=��eikn and
limn→−� �n=��eikne−i�, where � is the total phase shift asso-
ciated with the dark soliton. The relation between the bound-
ary condition and the frequency � is given by ����2=�
−2C cos k �17,19�. To obtain a stable solution, we must first
require the background wave to be modulationally stable,
which is obtained when C cos k�0 �24�.

A special case considered in this paper is when k=�,
which corresponds to the so-called staggered transformation,
i.e., �n→ �−1�n�n, relating Eq. �1� with C�0 �nonlinearity
and coupling of same sign� to the same equation with C
�0 �nonlinearity and coupling of opposite sign�. A staggered

dark soliton is one solution admitted by Eq. �1� with C�0,
thus corresponding to an unstaggered dark soliton for C�0.
As discussed in Sec. I, experiments on the creation and ob-
servation of staggered dark solitons in waveguide arrays
have been recently reported �7,10�. A theoretical study of the
more general case with nonzero k�� has also recently been
reported �25�. In this case, the fundamental stationary dark
solitons were found to be “gray” with nonzero minimum
intensities.

There are two fundamental types of staggered stationary
dark solitons, i.e., the on-site mode �A mode� and the inter-
site mode �B mode�, which are stable and unstable, respec-
tively, for small C �19�. At C=0 and �=1, the A mode takes
the form

�n = �. . . ,− 1, + 1,0,− 1, + 1, . . . � , �3�

described by a single “hole” inserted in a constant amplitude
wave background. The B mode is described by

�n = �. . . ,− 1, + 1,− 1,− 1, + 1,− 1, . . . � , �4�

and can be obtained by removing one site from the constant-
amplitude k=� background. In both cases, an additional total
phase shift �=� appears across the defect. From now on, to
characterize a particular solution, we use the corresponding
solution at C=0.

We call the two above modes the basic modes since they
both can be followed uniquely from the case C=0 to C
→� �19�. If the continuation, as in �19�, is done by varying
the frequency as �=1−2C to keep a constant background
intensity ��=1 �alternatively, continuation of the A mode �3�
may also be performed at constant complementary norm as
defined, e.g., in �14��, the latter is a continuum limit where
the standard nonlinear Schrödinger dark-soliton solution
�e.g., �14�� is obtained. In �19�, the stability of the A mode
was discussed, as well as a critical value of the coupling
parameter Ccr above which the mode becomes unstable iden-
tified. At the critical value, one pair of discrete eigenvalues
of the solution collides with eigenvalues coming from the
continuous spectrum, and results in four complex eigenval-
ues with nonzero real part for C�Ccr. Such an instability is
called oscillatory instability.

In this section, we will reproduce some of the calculations
in �19�, using, however, for illustrative purposes, a different
parametrization. Thus, we here keep �=1 fixed and let ��

vary as a function of C, contrary to �19�. Effectively, this
corresponds to rescaling also the coupling constants from
�19� �denoted as C�19�� as C=C�19� / �1−2C�19��. Note that
there is one-one correspondence 0�C��↔0�C�19��

1
2 ,

but that the regime C�19��
1
2 �and thus the continuum limit�,

cannot be obtained by smooth continuation increasing C at
fixed �. Moreover, the intensity of the background wave
����2=1+2C diverges when C→�. However, this does not
matter for the studies of dark solitons with multiple holes in
the forthcoming sections, since these exist only for relatively
small values of the coupling C.

We look for a dark soliton of Eq. �1� from a given initial
condition at C=0 using the Newton-Raphson continuation
method with periodic boundary conditions �see, e.g., �26��.
In general, if nothing else is stated, we use the number of
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sites N=201 and �=1. To assure that the obtained results are
not influenced by the finite number of sites, we compare
them with the calculation using a higher number of sites.

The linearization of �1� around an exact solution ��n�
yields, by writing �n�t�= ��n+	n�t��ei�t,

i	̇n − �	n + C�	n+1 + 	n−1� + 2��n�2	n + �n
2	̄n = 0, �5�

with the overbar representing the complex conjugation. This
leads to a standard linear eigenvalue problem �see, e.g., �19�
and references therein�. Let us denote an eigenvalue of the
considered solution with 
. The spectrum 
 generally may
consist of discrete spectrum �eigenvalues� and continuous
spectrum. The continuous spectrum can be obtained by cal-
culating the dispersion relation of a linear wave

	n = aei��n−�t� + be−i��n−�t�,

satisfying Eq. �5� with �n= �−1�n��+2C. With 
= i�, the
continuous spectrum is obtained from the dispersion relation
to lie in the interval �0, ± i�32C2+8�C�.

When C→0, the entire continuous spectrum of the A
mode tends to zero plus an eigenvalue at ±i� due to the
presence of the hole. For nonzero C, we use MATLAB to solve
the above eigenvalue problem for given ��n�. The unstable
eigenvalue of the A mode shown by the maximum of Re�
�
as a function of C is presented in Fig. 1. Our numerical
scheme shows that the instability is getting large as the cou-
pling parameter C increases. The critical coupling parameter
Ccr, above which the staggered dark soliton becomes un-
stable, is found at Ccr	0.0902. Note that Ccr

�19�=Ccr / �1
+2Ccr�	0.0764. Note also that the rescaling of background
intensity also rescales the stability eigenvalues 
 compared
to the corresponding eigenvalues 
�19�, as 
=
�19� / �1
−2C�19��. As a consequence, 
→� as C→�, and the maxi-
mum of the instability at C�19�	0.32 does not appear with
the parametrization used in the present work.

The above result can be approximated analytically. Note
that the phonon band lies between 0 and ±i�32C2+8�C. For
small but nonzero C, the eigenvalues at ±i� move towards 0
along the imaginary axis. At some value of C there will be a
collision between these eigenvalues and the edges of the con-

tinuous spectrum, creating two pairs of complex eigenvalues
but with nonzero real part �oscillatory instability� �19�. As-
suming that, for small C, the eigenfunction is strongly local-
ized at the hole, then its oscillation frequency �=−i
 is close
to the dark soliton frequency �. Therefore, we obtain

Ccr 	
�3 − 1

8
� 	 0.091 51� .

Contrary to the A mode, the B mode, which is an intersite
dark soliton, is always unstable for any values of positive C
�17–19�.

III. DARK SOLITONS WITH CONSECUTIVE HOLES

In this section, we will discuss the stability of dark soliton
structures with consecutive holes characterized by the num-
ber of zeros in the solution for C=0. Again, there are two
possible types of modes: the A modes and the B modes. The
names are from the basic modes to which we add some zeros
in the middle of the solution. As before, we fix the value of
� at 1.

A. The A modes

In this subsection, we will focus on the first mode, i.e., the
A mode. The A mode with two zeros is simply the basic A
mode given by Eq. �3� with two zeros instead of one. Hence,
the A mode with two holes is given by �at C=0�

�n = �. . . ,− 1, + 1,0,0,− 1, + 1, . . . � . �6�

A sketch of the solution for C�0 using the above initial
condition is shown in Fig. 2�a�. Looking at the magnitude
value ��n�2 of this structure, we can say that this solution also
represents an inter-site dark soliton as is the basic B mode
Eq. �4�. However, there is a fundamental difference: since
each inserted hole also contributes a phase shift of �, the
total phase shift associated with the two-hole A mode is �
=2�, while that of the basic B mode is �. Thus, these two
solutions correspond to different boundary conditions. In our
case, using periodic boundary conditions for the background
k=� wave, a phase shift �=� requires the number of sites N
to be odd, while �=2� requires even N. These observations
also allow us to interpret the two-hole A mode as a tightly
bound state of two basic A-mode dark solitons.

An interesting result is that this intersite dark soliton is
stable for some values of the coupling parameter C. Hence,
we have found a stable intersite dark soliton. The real part of
the most unstable eigenvalues of the A mode with two holes
as a function of C is shown as a solid line in Fig. 2�b�. Note
that there is an analogy with the so called “twisted localized
modes” �27�, which are intersite “bright” phase-twisted soli-
tons, �n= �. . . ,0 ,0 , +1 ,−1,0 ,0 , . . . � at C=0, also stable for
small C �28�.

In Fig. 2�c�, we show the evolution of a dark soliton with
two holes at C=0.2. We use a fourth-order Runge-Kutta
scheme to do the integration in time of Eq. �1�. As an initial
condition, we use a numerically obtained dark soliton per-
turbed by a random function with maximum value 10−4. It is
clearly seen from the inset of Fig. 2�c� that after some time,

FIG. 1. Real part of the unstable eigenvalues of an on-site dark
soliton of Eq. �1� as a function of the coupling parameter C.
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the holes transfer energy to the neighboring sites, so that all
the sites start oscillating. By studying more carefully the dy-
namics shown in the contour plot, one may identify outgoing
lines with small-amplitude traveling gray solitons, with small
intensity dips associated with localized phase shifts, which
survive for intermediate time ranges.

The value of the critical coupling parameter Ccr, above
which the state is unstable, is found numerically at 0.0782.
This value can be approximated analytically by doing the
same kind of calculation as given in the previous section.

Let the holes be at the sites number n=1 and n=2. By
assuming that the eigenfunction is completely localized at
the holes, then 	n=0 for n�1,2. Hence, we obtain a system
of two coupled equations for 	1 and 	2. We know that, for the
eigenmode causing the instability, the holes are oscillating
with out-of-phase configuration, from which we can assume
that 	1=−	2. Since ��1,2�=0, we obtain that the holes oscil-
late with frequency �−C. Equating this frequency with the
edge of the continuous spectrum gives an approximate criti-
cal value of the coupling parameter, i.e.,

Ccr =
2�14 − 5

31
� 	 0.0801� ,

which agrees quite well with the numerical result.
If we keep increasing the coupling C, at a particular value

the Newton-Raphson will fail and the initial solution will
jump to another solution. This is a typical scenario of the
disappearance of a solution in a saddle-node bifurcation. For
our A mode with two holes, the bifurcation point Cb is at
Cb	0.7237.

Our analysis reveals that the A mode with two holes col-
lides in a saddle-node bifurcation with a solution coded by
�n= �. . . ,−1 , +1 , +1,−1,−1, +1, . . . �. The stability of the lat-
ter solution is shown as a dashed line in Fig. 2�b� �note that
it is always unstable�.

If we look at the stability curves in Fig. 2�b� then we will
notice that at some points, the curves form a cusp. The points
correspond to a structural change of the most unstable eigen-
values. The cusp point in the lower branch at C	0.48, for
instance, is the point at which the most unstable and complex
eigenvalues become purely real.

We have done also the calculation on the stability and
existence of the A mode with multiple consecutive holes.
The result is summarized in Fig. 3. It is clear that the exis-
tence region is decreasing as the number of zeros increases,
while the critical coupling parameter Ccr is almost indepen-
dent of the number of zeros. One important difference be-
tween dark solitons with even and odd number of holes of
this mode is that the former one has no � phase shift of its
background field across the holes �or, equivalently, that the
total phase shift � is an even/odd multiple of �, respec-
tively�.

B. The B modes

After considering an expansion of the basic A mode by
adding a number of zeros in the solution, one may question
also what happens if we put zeros in the center of the basic B
mode. It is known that the basic B mode is unstable �17–19�.

We start with considering only one zero in the middle of a
dark soliton such that the structure in the uncoupled case is
given by �. . . ,−1 , +1 ,0 , +1 ,−1, . . . �. Note that the total
phase shift for this solution is �=0�mod 2��. Using N=202,
we found only a very small stable region for this structure,
which becomes unstable for C�Ccr	0.0050. The instability

FIG. 2. �a� The oscillation amplitude of the phase field �n at
each site and the value ��n�2 of an intersite dark soliton. The two
holes move with out-of-phase configuration. �b� Real part of the
unstable eigenvalues of the solution as a function of the coupling
parameter C. The inset enlarges the lower branch where it becomes
clear that the intersite-like dark soliton is stable for small C. �c� The
evolution of an A mode soliton at C=0.2. In the contour plot, lines
correspond to intensities ��n�2=0.5, 1 and 1.5. The inset shows the
detailed dynamics of a few sites at and around the holes. One can
see that the holes also move in time in out-of-phase configuration.

H. SUSANTO AND M. JOHANSSON PHYSICAL REVIEW E 72, 016605 �2005�

016605-4



occurs through an eigenvalue collision at 0, and thus the
resulting unstable eigenvalues are purely real. It can be seen
to correspond to interactions between the two “+1”-sites on
either side of the hole. For larger coupling, C	0.081, also
an oscillatory instability with complex eigenvalues sets in,
corresponding to an interaction between a mode localized at
the hole and the continuous spectrum, as described above for
the A modes. At some value of the coupling, C=Cb
	0.1834, the structure also disappears in a saddle-node bi-
furcation with a solution coded by �. . . ,−1 , +1 , +1, +1,
−1, . . . �.

Next, we consider when there are two zeros in the B
mode, yielding �=��mod 2��. A sketch of the solution at
finite C is given in Fig. 4�a�. It is interesting to note that the
structure is stable for small C, in a non-negligible regime for
N=201. The stability curve is shown in Fig. 4�b� as a solid
line. The numerically obtained critical coupling parameter is
Ccr=0.0728, where the real instability sets in, analogously to
the case for the one-hole B mode. At a slightly larger value
of C also the complex instability appears as above, but the
dominating eigenvalue is always the real one. This solution
will also disappear in a saddle-node bifurcation at Cb
=0.2381. One can guess already that this B-mode soliton
collides with the solution coded by �. . . ,−1 , +1 , +1, +1,
+1,−1. . . �. The stability of the latter solution is shown in
dashed-line in Fig. 4�b�. The evolution of a dark soliton of
this mode for C=0.2 is shown in Fig. 4�c�. In Fig. 3 we show
the existence and the stability region of the B mode with
multiple zeros. Please note that the above numerical result is
obtained by using the total number of sites N=201 �even
number of zeros, �=��mod 2��� or N=202 �odd number of
zeros, �=0�mod 2���.

We test the numerical result with a larger number of sites.
Another interesting thing is that the critical value Ccr is de-
creasing as a function of the total number of sites. For the B
mode with two zeros we obtained that using N=301, Ccr
	0.0592. Using N=401, we obtained Ccr	0.0511. From
this we conclude that the stabilization we have here is pre-

sumably due to the finite number of sites and the boundary
conditions. In the limit of N→�, a B-mode dark soliton with
multiple zeros seemingly has Ccr=0. Analogously, the stabil-
ity region for the B mode with one hole increases for smaller
N, so that, e.g., Ccr	0.011 for N=100 and Ccr	0.018 for
N=60 for this mode.

Nevertheless, taking a different value for the number of
sites does not change the boundary of the existence of this
mode. Hence, the number of sites, as long as it is large
enough, will not influence the value of Cb. It can be simply
understood since Cb is determined by the interaction of the
holes with only some neighboring sites. The same is true for
the location of the oscillatory instability threshold, which is
also roughly independent on the system size. As a conse-
quence, when the number of sites is decreased for a given

FIG. 3. A diagram of the existence and the stability region of
dark solitons with multiple zeros in the A-mode configuration �–�–�
and the B-mode configuration �–�–�. The calculations for the A
modes �B modes� are done with N=201 or N=202 for an odd
�even� or even �odd� number of zeros, respectively.

FIG. 4. The same as Fig. 2, but the two holes are in the B mode
configuration.
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mode, the first encountered instability determining Ccr may
change from being real to oscillatory. Thus, for example, for
the B mode with two holes, the oscillatory instability appears
for smaller C than the real one for N�176.

IV. STRUCTURES RESEMBLING INTERACTION OF
MULTIPLE DARK SOLITONS

Besides structures with holes placed consecutively in an
array, we can consider also the case of staggered dark soli-
tons with several holes but separated by several nonzero �n.
Such structures can be considered as multiple dark solitons.
The interaction of the solitons can be seen through the sta-
bility of the structure compared to the solution representing
one soliton. Unfortunately, a single soliton already becomes
unstable for very small coupling C which makes it difficult
to see the influence of the presence of one soliton to the
other.

As an example, we consider a structure that can be
thought as a representation of two dark solitons. The simplest
one is given by �. . . , +1 ,−1 ,0 , +1 ,0 ,−1 , +1, . . . �. A sketch
of this solution at finite C is presented in Fig. 5�a�.

We have analyzed the stability of this solution. We ob-
tained numerically that Ccr	0.0908. Note that the critical
coupling is slightly higher than the Ccr of one soliton. We

can say that the two solitons are stabilizing each other.
In Fig. 5�b� we present the evolution of a two-dark-soliton

structure at C=0.2. We can see that after a while, the nonzero
field in the middle of the two zeros becomes oscillating
which is followed by a collision between the two holes. The
final state is that all the sites oscillate.

We have also considered interaction of many holes given
by the code �. . . ,−1 , +1 ,0 ,−1 , . . . ,0 , +1 ,−1, . . . �. Up to four
digit decimals, all the structures lose their stability at Ccr
	0.0908.

Besides the solution shown here, one can make other so-
lutions representing two dark solitons as a function of, e.g.,
number of sites between the two zeros. Yet, we believe that
all such solutions will also disappear in a bifurcation with
other structures.

V. CONCLUSIONS

To conclude, we have discussed the stability and the ex-
istence of staggered discrete dark solitons with multiple
holes in the focusing discrete nonlinear Schrödinger equa-
tion. It is shown that all of the considered structures disap-
pear in a saddle-node bifurcation. Even so, an important ob-
servation from our numerical investigations is that all such
structures indeed are stable for a range of small values of the
coupling parameter, when considered for finite lattices with
periodic boundary conditions. For A-mode solitons, charac-
terized by antiphase oscillations of the two sites surrounding
the holes, the results are not sensitive to system size effects,
and thus the stability regime should survive also in the limit
of an infinite system. In particular, for weak coupling the A
mode with two holes is a stable intersite dark soliton, which,
in analogy to the well-known “twisted localized modes” �27�
may be termed a “twisted dark mode,” accounting for the
fact that it is associated with a total phase shift �=2�, while
�=� for the fundamental dark solitons. However, for
B-mode solitons, having in-phase oscillations at the sites
neighboring the holes, the stability regime shrinks when the
system size is increased, seemingly disappearing asymptoti-
cally as N→�.

For all the studied dark modes with two or more consecu-
tive central holes, we found that the stability regime is
smaller than that of the earlier studied �19� basic A mode
�with one hole�. We have also considered structures repre-
senting multiple dark solitons, with nonconsecutive holes.
Especially for the case of two solitons �holes� separated by
one lattice site, we have shown that the solitons stabilize
each other so that the oscillatory instability happens at a
coupling parameter value slightly higher than for a single
A-mode soliton.

Let us finally relate our results to what is known generally
from earlier and recent rigorous work on linear stability of
multisite solitons in the �focusing� discrete nonlinear
Schrödinger equation. Using Aubry’s theory of effective ac-
tion �29�, it was proven �28� that two-site antiphased solu-
tions are stable for weak coupling, if they are placed at
neighboring sites �twisted localized mode� or have one hole
in between. Similarly, it was proven in �19� that the stag-
gered basic A-mode dark soliton is also stable for small C.

FIG. 5. �a� A solution representing two dark solitons. The two
solitons are only separated by one lattice site. �b� The evolution of
a solution given in �a� at C=0.2. The inset shows the evolution of
several sites at and around the holes.
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This led to the conjecture, that generally structures composed
by antiphased excited sites, separated by an arbitrary number
of hole sites, should be stable for weak coupling, while each
pair of in-phase excited sites �neighboring or separated by
empty sites� should give rise to one pair of unstable �real�
eigenvalues. Very recently, this was proven rigorously under
quite general conditions �Theorem 3.6 in �23��. However,
since �23� exclusively deals with localized modes �with finite
number of excited sites� in infinite systems, the proof does
not cover the dark modes considered by us. Still, we note
that the stability of the A modes for small C is in agreement
with the conjecture.

However, the fact that we found the B modes with two
in-phase excited sites, separated by holes, also to be stable
for small C for any finite N shows, that the conjecture is
generally not true for finite systems. Heuristically, we might
explain this as follows: even though the dynamics locally
would like to twist the central in-phase oscillators towards
the favorable antiphase configuration, this cannot be done
globally for a finite system with periodic boundary condi-
tions, without creating a phase mismatch at the boundary.
Thus, the solution remains stable as long as the “gain” from
twisting the central part is smaller than the “loss” resulting

from twisting the rest of the mode. Since, perturbatively for
small C the phase interaction between oscillators spaced m
sites scales as Cm �28�, the former scales as Cp+1 for a B
mode with p holes �and is independent of N�, while the latter
plausibly �for homogeneous phase torsion� scales as C /N
�and thus decreases with N�. Consequently, the stabilizing
part from the rest of the lattice will dominate the destabiliz-
ing contribution from the central sites for small C and N if
p
1, while the destabilizing central part takes over as C
and/or N increases. This argument thus predicts the �real�
instability threshold for these modes to scale as Ccr

�1/N�1/p, which agrees well with the numerical results re-
ported in Sec. III B.
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